Stabilized SQP revisited
نویسندگان
چکیده
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve superlinear convergence in situations when the Lagrange multipliers associated to a solution are not unique. Within the framework of Fischer (Math Program 94:91–124, 2002), the key to local superlinear convergence of sSQP are the following two properties: upper Lipschitzian behavior of solutions of the Karush-Kuhn-Tucker (KKT) system under canonical perturbations and local solvability of sSQP subproblems with the associated primal-dual step being of the order of the distance from the current iterate to the solution set of the unperturbed KKT system. According to Fernández and Solodov (Math Program 125:47–73, 2010), both of these properties are ensured by the second-order sufficient optimality condition (SOSC) without any constraint qualification assumptions. In this paper, we state precise relationships between the upper Lipschitzian property of solutions of KKT systems, error bounds for KKT systems, the notion of critical Lagrange multipliers (a subclass of multipliers that violate SOSC in a very special way), the second-order necessary condition for optimality, and solvability of sSQP subproblems. Moreover, Research of the first author is supported by the Russian Foundation for Basic Research Grant 10-01-00251, and by RF President’s Grant NS-693.2008.1 for the support of leading scientific schools. The second author is supported in part by CNPq Grants 300513/2008-9 and 471267/2007-4, by PRONEX–Optimization, and by FAPERJ. A. F. Izmailov Department of Operations Research, Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskiye Gory, GSP-2, 119992 Moscow, Russia e-mail: [email protected] M. V. Solodov (B) IMPA, Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ 22460-320, Brazil e-mail: [email protected]
منابع مشابه
A Globally Convergent Stabilized Sqp Method: Superlinear Convergence
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):198...
متن کاملA stabilized SQP method: superlinear convergence
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a stabilized SQP method has been proposed that allows convergence to points satisfying certain secondorder KKT conditions (Report CCoM 13-04, Center f...
متن کاملA Globally Convergent Stabilized SQP Method
Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formul...
متن کاملA Stabilized Sqp Method: Global Convergence
Stabilized sequential quadratic programming (SQP) methods for nonlinear optimization are designed to provide a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. This paper concerns the global convergence properties of a stabilized SQP method with a primal-dual augmented Lagrangian merit function. The proposed me...
متن کاملA Regularized Sqp Method with Convergence to Second-order Optimal Points
Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and...
متن کاملSharp Primal Superlinear Convergence Results for Some Newtonian Methods for Constrained Optimization
As is well known, Q-superlinear or Q-quadratic convergence of the primal-dual sequence generated by an optimization algorithm does not, in general, imply Q-superlinear convergence of the primal part. Primal convergence, however, is often of particular interest. For the sequential quadratic programming (SQP) algorithm, local primal-dual quadratic convergence can be established under the assumpti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 133 شماره
صفحات -
تاریخ انتشار 2012